mirror of
https://git.joinsharkey.org/Sharkey/Sharkey.git
synced 2024-12-27 21:03:08 +02:00
commit
a94c130140
11 changed files with 514 additions and 0 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -3,6 +3,7 @@
|
|||
/node_modules
|
||||
/built
|
||||
/uploads
|
||||
/data
|
||||
npm-debug.log
|
||||
*.pem
|
||||
run.bat
|
||||
|
|
|
@ -22,6 +22,14 @@ common:
|
|||
confused: "Confused"
|
||||
pudding: "Pudding"
|
||||
|
||||
post_categories:
|
||||
music: "Music"
|
||||
game: "Video Game"
|
||||
anime: "Anime"
|
||||
it: "IT"
|
||||
gadgets: "Gadgets"
|
||||
photography: "Photography"
|
||||
|
||||
input-message-here: "Enter message here"
|
||||
send: "Send"
|
||||
delete: "Delete"
|
||||
|
@ -80,6 +88,9 @@ common:
|
|||
mk-post-menu:
|
||||
pin: "Pin"
|
||||
pinned: "Pinned"
|
||||
select: "Select category"
|
||||
categorize: "Accept"
|
||||
categorized: "Category reported. Thank you!"
|
||||
|
||||
mk-reaction-picker:
|
||||
choose-reaction: "Pick your reaction"
|
||||
|
@ -375,6 +386,7 @@ mobile:
|
|||
twitter-integration: "Twitter integration"
|
||||
signin-history: "Sign in history"
|
||||
api: "API"
|
||||
link: "MisskeyLink"
|
||||
settings: "Settings"
|
||||
signout: "Sign out"
|
||||
|
||||
|
|
|
@ -22,6 +22,14 @@ common:
|
|||
confused: "こまこまのこまり"
|
||||
pudding: "Pudding"
|
||||
|
||||
post_categories:
|
||||
music: "音楽"
|
||||
game: "ゲーム"
|
||||
anime: "アニメ"
|
||||
it: "IT"
|
||||
gadgets: "ガジェット"
|
||||
photography: "写真"
|
||||
|
||||
input-message-here: "ここにメッセージを入力"
|
||||
send: "送信"
|
||||
delete: "削除"
|
||||
|
@ -80,6 +88,9 @@ common:
|
|||
mk-post-menu:
|
||||
pin: "ピン留め"
|
||||
pinned: "ピン留めしました"
|
||||
select: "カテゴリを選択"
|
||||
categorize: "決定"
|
||||
categorized: "カテゴリを報告しました。これによりMisskeyが賢くなり、投稿の自動カテゴライズに役立てられます。ご協力ありがとうございました。"
|
||||
|
||||
mk-reaction-picker:
|
||||
choose-reaction: "リアクションを選択"
|
||||
|
@ -375,6 +386,7 @@ mobile:
|
|||
twitter-integration: "Twitter連携"
|
||||
signin-history: "ログイン履歴"
|
||||
api: "API"
|
||||
link: "Misskeyリンク"
|
||||
settings: "設定"
|
||||
signout: "サインアウト"
|
||||
|
||||
|
|
|
@ -64,6 +64,7 @@
|
|||
"@types/webpack": "3.0.10",
|
||||
"@types/webpack-stream": "3.2.7",
|
||||
"@types/websocket": "0.0.34",
|
||||
"@types/msgpack-lite": "^0.1.5",
|
||||
"chai": "4.1.2",
|
||||
"chai-http": "3.0.0",
|
||||
"css-loader": "0.28.7",
|
||||
|
@ -120,10 +121,12 @@
|
|||
"is-root": "1.0.0",
|
||||
"is-url": "1.2.2",
|
||||
"js-yaml": "3.9.1",
|
||||
"mecab-async": "^0.1.0",
|
||||
"mongodb": "2.2.31",
|
||||
"monk": "6.0.3",
|
||||
"morgan": "1.8.2",
|
||||
"ms": "2.0.0",
|
||||
"msgpack-lite": "^0.1.26",
|
||||
"multer": "1.3.0",
|
||||
"nprogress": "0.2.0",
|
||||
"os-utils": "0.0.14",
|
||||
|
|
|
@ -394,6 +394,10 @@ const endpoints: Endpoint[] = [
|
|||
name: 'posts/trend',
|
||||
withCredential: true
|
||||
},
|
||||
{
|
||||
name: 'posts/categorize',
|
||||
withCredential: true
|
||||
},
|
||||
{
|
||||
name: 'posts/reactions',
|
||||
withCredential: true
|
||||
|
|
52
src/api/endpoints/posts/categorize.ts
Normal file
52
src/api/endpoints/posts/categorize.ts
Normal file
|
@ -0,0 +1,52 @@
|
|||
/**
|
||||
* Module dependencies
|
||||
*/
|
||||
import $ from 'cafy';
|
||||
import Post from '../../models/post';
|
||||
|
||||
/**
|
||||
* Categorize a post
|
||||
*
|
||||
* @param {any} params
|
||||
* @param {any} user
|
||||
* @return {Promise<any>}
|
||||
*/
|
||||
module.exports = (params, user) => new Promise(async (res, rej) => {
|
||||
if (!user.is_pro) {
|
||||
return rej('This endpoint is available only from a Pro account');
|
||||
}
|
||||
|
||||
// Get 'post_id' parameter
|
||||
const [postId, postIdErr] = $(params.post_id).id().$;
|
||||
if (postIdErr) return rej('invalid post_id param');
|
||||
|
||||
// Get categorizee
|
||||
const post = await Post.findOne({
|
||||
_id: postId
|
||||
});
|
||||
|
||||
if (post === null) {
|
||||
return rej('post not found');
|
||||
}
|
||||
|
||||
if (post.is_category_verified) {
|
||||
return rej('This post already has the verified category');
|
||||
}
|
||||
|
||||
// Get 'category' parameter
|
||||
const [category, categoryErr] = $(params.category).string().or([
|
||||
'music', 'game', 'anime', 'it', 'gadgets', 'photography'
|
||||
]).$;
|
||||
if (categoryErr) return rej('invalid category param');
|
||||
|
||||
// Set category
|
||||
Post.update({ _id: post._id }, {
|
||||
$set: {
|
||||
category: category,
|
||||
is_category_verified: true
|
||||
}
|
||||
});
|
||||
|
||||
// Send response
|
||||
res();
|
||||
});
|
|
@ -68,6 +68,9 @@ type Source = {
|
|||
hook_secret: string;
|
||||
username: string;
|
||||
};
|
||||
categorizer?: {
|
||||
mecab_command?: string;
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
|
|
302
src/tools/ai/naive-bayes.js
Normal file
302
src/tools/ai/naive-bayes.js
Normal file
|
@ -0,0 +1,302 @@
|
|||
// Original source code: https://github.com/ttezel/bayes/blob/master/lib/naive_bayes.js (commit: 2c20d3066e4fc786400aaedcf3e42987e52abe3c)
|
||||
// CUSTOMIZED BY SYUILO
|
||||
|
||||
/*
|
||||
Expose our naive-bayes generator function
|
||||
*/
|
||||
module.exports = function (options) {
|
||||
return new Naivebayes(options)
|
||||
}
|
||||
|
||||
// keys we use to serialize a classifier's state
|
||||
var STATE_KEYS = module.exports.STATE_KEYS = [
|
||||
'categories', 'docCount', 'totalDocuments', 'vocabulary', 'vocabularySize',
|
||||
'wordCount', 'wordFrequencyCount', 'options'
|
||||
];
|
||||
|
||||
/**
|
||||
* Initializes a NaiveBayes instance from a JSON state representation.
|
||||
* Use this with classifier.toJson().
|
||||
*
|
||||
* @param {String} jsonStr state representation obtained by classifier.toJson()
|
||||
* @return {NaiveBayes} Classifier
|
||||
*/
|
||||
module.exports.fromJson = function (jsonStr) {
|
||||
var parsed;
|
||||
try {
|
||||
parsed = JSON.parse(jsonStr)
|
||||
} catch (e) {
|
||||
throw new Error('Naivebayes.fromJson expects a valid JSON string.')
|
||||
}
|
||||
// init a new classifier
|
||||
var classifier = new Naivebayes(parsed.options)
|
||||
|
||||
// override the classifier's state
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
if (!parsed[k]) {
|
||||
throw new Error('Naivebayes.fromJson: JSON string is missing an expected property: `'+k+'`.')
|
||||
}
|
||||
classifier[k] = parsed[k]
|
||||
})
|
||||
|
||||
return classifier
|
||||
}
|
||||
|
||||
/**
|
||||
* Given an input string, tokenize it into an array of word tokens.
|
||||
* This is the default tokenization function used if user does not provide one in `options`.
|
||||
*
|
||||
* @param {String} text
|
||||
* @return {Array}
|
||||
*/
|
||||
var defaultTokenizer = function (text) {
|
||||
//remove punctuation from text - remove anything that isn't a word char or a space
|
||||
var rgxPunctuation = /[^(a-zA-ZA-Яa-я0-9_)+\s]/g
|
||||
|
||||
var sanitized = text.replace(rgxPunctuation, ' ')
|
||||
|
||||
return sanitized.split(/\s+/)
|
||||
}
|
||||
|
||||
/**
|
||||
* Naive-Bayes Classifier
|
||||
*
|
||||
* This is a naive-bayes classifier that uses Laplace Smoothing.
|
||||
*
|
||||
* Takes an (optional) options object containing:
|
||||
* - `tokenizer` => custom tokenization function
|
||||
*
|
||||
*/
|
||||
function Naivebayes (options) {
|
||||
// set options object
|
||||
this.options = {}
|
||||
if (typeof options !== 'undefined') {
|
||||
if (!options || typeof options !== 'object' || Array.isArray(options)) {
|
||||
throw TypeError('NaiveBayes got invalid `options`: `' + options + '`. Pass in an object.')
|
||||
}
|
||||
this.options = options
|
||||
}
|
||||
|
||||
this.tokenizer = this.options.tokenizer || defaultTokenizer
|
||||
|
||||
//initialize our vocabulary and its size
|
||||
this.vocabulary = {}
|
||||
this.vocabularySize = 0
|
||||
|
||||
//number of documents we have learned from
|
||||
this.totalDocuments = 0
|
||||
|
||||
//document frequency table for each of our categories
|
||||
//=> for each category, how often were documents mapped to it
|
||||
this.docCount = {}
|
||||
|
||||
//for each category, how many words total were mapped to it
|
||||
this.wordCount = {}
|
||||
|
||||
//word frequency table for each category
|
||||
//=> for each category, how frequent was a given word mapped to it
|
||||
this.wordFrequencyCount = {}
|
||||
|
||||
//hashmap of our category names
|
||||
this.categories = {}
|
||||
}
|
||||
|
||||
/**
|
||||
* Initialize each of our data structure entries for this new category
|
||||
*
|
||||
* @param {String} categoryName
|
||||
*/
|
||||
Naivebayes.prototype.initializeCategory = function (categoryName) {
|
||||
if (!this.categories[categoryName]) {
|
||||
this.docCount[categoryName] = 0
|
||||
this.wordCount[categoryName] = 0
|
||||
this.wordFrequencyCount[categoryName] = {}
|
||||
this.categories[categoryName] = true
|
||||
}
|
||||
return this
|
||||
}
|
||||
|
||||
/**
|
||||
* train our naive-bayes classifier by telling it what `category`
|
||||
* the `text` corresponds to.
|
||||
*
|
||||
* @param {String} text
|
||||
* @param {String} class
|
||||
*/
|
||||
Naivebayes.prototype.learn = function (text, category) {
|
||||
var self = this
|
||||
|
||||
//initialize category data structures if we've never seen this category
|
||||
self.initializeCategory(category)
|
||||
|
||||
//update our count of how many documents mapped to this category
|
||||
self.docCount[category]++
|
||||
|
||||
//update the total number of documents we have learned from
|
||||
self.totalDocuments++
|
||||
|
||||
//normalize the text into a word array
|
||||
var tokens = self.tokenizer(text)
|
||||
|
||||
//get a frequency count for each token in the text
|
||||
var frequencyTable = self.frequencyTable(tokens)
|
||||
|
||||
/*
|
||||
Update our vocabulary and our word frequency count for this category
|
||||
*/
|
||||
|
||||
Object
|
||||
.keys(frequencyTable)
|
||||
.forEach(function (token) {
|
||||
//add this word to our vocabulary if not already existing
|
||||
if (!self.vocabulary[token]) {
|
||||
self.vocabulary[token] = true
|
||||
self.vocabularySize++
|
||||
}
|
||||
|
||||
var frequencyInText = frequencyTable[token]
|
||||
|
||||
//update the frequency information for this word in this category
|
||||
if (!self.wordFrequencyCount[category][token])
|
||||
self.wordFrequencyCount[category][token] = frequencyInText
|
||||
else
|
||||
self.wordFrequencyCount[category][token] += frequencyInText
|
||||
|
||||
//update the count of all words we have seen mapped to this category
|
||||
self.wordCount[category] += frequencyInText
|
||||
})
|
||||
|
||||
return self
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine what category `text` belongs to.
|
||||
*
|
||||
* @param {String} text
|
||||
* @return {String} category
|
||||
*/
|
||||
Naivebayes.prototype.categorize = function (text) {
|
||||
var self = this
|
||||
, maxProbability = -Infinity
|
||||
, chosenCategory = null
|
||||
|
||||
var tokens = self.tokenizer(text)
|
||||
var frequencyTable = self.frequencyTable(tokens)
|
||||
|
||||
//iterate thru our categories to find the one with max probability for this text
|
||||
Object
|
||||
.keys(self.categories)
|
||||
.forEach(function (category) {
|
||||
|
||||
//start by calculating the overall probability of this category
|
||||
//=> out of all documents we've ever looked at, how many were
|
||||
// mapped to this category
|
||||
var categoryProbability = self.docCount[category] / self.totalDocuments
|
||||
|
||||
//take the log to avoid underflow
|
||||
var logProbability = Math.log(categoryProbability)
|
||||
|
||||
//now determine P( w | c ) for each word `w` in the text
|
||||
Object
|
||||
.keys(frequencyTable)
|
||||
.forEach(function (token) {
|
||||
var frequencyInText = frequencyTable[token]
|
||||
var tokenProbability = self.tokenProbability(token, category)
|
||||
|
||||
// console.log('token: %s category: `%s` tokenProbability: %d', token, category, tokenProbability)
|
||||
|
||||
//determine the log of the P( w | c ) for this word
|
||||
logProbability += frequencyInText * Math.log(tokenProbability)
|
||||
})
|
||||
|
||||
if (logProbability > maxProbability) {
|
||||
maxProbability = logProbability
|
||||
chosenCategory = category
|
||||
}
|
||||
})
|
||||
|
||||
return chosenCategory
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate probability that a `token` belongs to a `category`
|
||||
*
|
||||
* @param {String} token
|
||||
* @param {String} category
|
||||
* @return {Number} probability
|
||||
*/
|
||||
Naivebayes.prototype.tokenProbability = function (token, category) {
|
||||
//how many times this word has occurred in documents mapped to this category
|
||||
var wordFrequencyCount = this.wordFrequencyCount[category][token] || 0
|
||||
|
||||
//what is the count of all words that have ever been mapped to this category
|
||||
var wordCount = this.wordCount[category]
|
||||
|
||||
//use laplace Add-1 Smoothing equation
|
||||
return ( wordFrequencyCount + 1 ) / ( wordCount + this.vocabularySize )
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a frequency hashmap where
|
||||
* - the keys are the entries in `tokens`
|
||||
* - the values are the frequency of each entry in `tokens`
|
||||
*
|
||||
* @param {Array} tokens Normalized word array
|
||||
* @return {Object}
|
||||
*/
|
||||
Naivebayes.prototype.frequencyTable = function (tokens) {
|
||||
var frequencyTable = Object.create(null)
|
||||
|
||||
tokens.forEach(function (token) {
|
||||
if (!frequencyTable[token])
|
||||
frequencyTable[token] = 1
|
||||
else
|
||||
frequencyTable[token]++
|
||||
})
|
||||
|
||||
return frequencyTable
|
||||
}
|
||||
|
||||
/**
|
||||
* Dump the classifier's state as a JSON string.
|
||||
* @return {String} Representation of the classifier.
|
||||
*/
|
||||
Naivebayes.prototype.toJson = function () {
|
||||
var state = {}
|
||||
var self = this
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
state[k] = self[k]
|
||||
})
|
||||
|
||||
var jsonStr = JSON.stringify(state)
|
||||
|
||||
return jsonStr
|
||||
}
|
||||
|
||||
// (original method)
|
||||
Naivebayes.prototype.export = function () {
|
||||
var state = {}
|
||||
var self = this
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
state[k] = self[k]
|
||||
})
|
||||
|
||||
return state
|
||||
}
|
||||
|
||||
module.exports.import = function (data) {
|
||||
var parsed = data
|
||||
|
||||
// init a new classifier
|
||||
var classifier = new Naivebayes()
|
||||
|
||||
// override the classifier's state
|
||||
STATE_KEYS.forEach(function (k) {
|
||||
if (!parsed[k]) {
|
||||
throw new Error('Naivebayes.import: data is missing an expected property: `'+k+'`.')
|
||||
}
|
||||
classifier[k] = parsed[k]
|
||||
})
|
||||
|
||||
return classifier
|
||||
}
|
57
src/tools/ai/predict-all-post-category.ts
Normal file
57
src/tools/ai/predict-all-post-category.ts
Normal file
|
@ -0,0 +1,57 @@
|
|||
const bayes = require('./naive-bayes.js');
|
||||
const MeCab = require('mecab-async');
|
||||
|
||||
import Post from '../../api/models/post';
|
||||
import config from '../../conf';
|
||||
|
||||
const classifier = bayes({
|
||||
tokenizer: this.tokenizer
|
||||
});
|
||||
|
||||
const mecab = new MeCab();
|
||||
if (config.categorizer.mecab_command) mecab.command = config.categorizer.mecab_command;
|
||||
|
||||
// 訓練データ取得
|
||||
Post.find({
|
||||
is_category_verified: true
|
||||
}, {
|
||||
fields: {
|
||||
_id: false,
|
||||
text: true,
|
||||
category: true
|
||||
}
|
||||
}).then(verifiedPosts => {
|
||||
// 学習
|
||||
verifiedPosts.forEach(post => {
|
||||
classifier.learn(post.text, post.category);
|
||||
});
|
||||
|
||||
// 全ての(人間によって証明されていない)投稿を取得
|
||||
Post.find({
|
||||
text: {
|
||||
$exists: true
|
||||
},
|
||||
is_category_verified: {
|
||||
$ne: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
fields: {
|
||||
_id: true,
|
||||
text: true
|
||||
}
|
||||
}).then(posts => {
|
||||
posts.forEach(post => {
|
||||
console.log(`predicting... ${post._id}`);
|
||||
const category = classifier.categorize(post.text);
|
||||
|
||||
Post.update({ _id: post._id }, {
|
||||
$set: {
|
||||
category: category
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
45
src/tools/ai/predict-user-interst.ts
Normal file
45
src/tools/ai/predict-user-interst.ts
Normal file
|
@ -0,0 +1,45 @@
|
|||
import Post from '../../api/models/post';
|
||||
import User from '../../api/models/user';
|
||||
|
||||
export async function predictOne(id) {
|
||||
console.log(`predict interest of ${id} ...`);
|
||||
|
||||
// TODO: repostなども含める
|
||||
const recentPosts = await Post.find({
|
||||
user_id: id,
|
||||
category: {
|
||||
$exists: true
|
||||
}
|
||||
}, {
|
||||
sort: {
|
||||
_id: -1
|
||||
},
|
||||
limit: 1000,
|
||||
fields: {
|
||||
_id: false,
|
||||
category: true
|
||||
}
|
||||
});
|
||||
|
||||
const categories = {};
|
||||
|
||||
recentPosts.forEach(post => {
|
||||
if (categories[post.category]) {
|
||||
categories[post.category]++;
|
||||
} else {
|
||||
categories[post.category] = 1;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
export async function predictAll() {
|
||||
const allUsers = await User.find({}, {
|
||||
fields: {
|
||||
_id: true
|
||||
}
|
||||
});
|
||||
|
||||
allUsers.forEach(user => {
|
||||
predictOne(user._id);
|
||||
});
|
||||
}
|
|
@ -2,6 +2,18 @@
|
|||
<div class="backdrop" ref="backdrop" onclick={ close }></div>
|
||||
<div class="popover { compact: opts.compact }" ref="popover">
|
||||
<button if={ post.user_id === I.id } onclick={ pin }>%i18n:common.tags.mk-post-menu.pin%</button>
|
||||
<div if={ I.is_pro && !post.is_category_verified }>
|
||||
<select ref="categorySelect">
|
||||
<option value="">%i18n:common.tags.mk-post-menu.select%</option>
|
||||
<option value="music">%i18n:common.post_categories.music%</option>
|
||||
<option value="game">%i18n:common.post_categories.game%</option>
|
||||
<option value="anime">%i18n:common.post_categories.anime%</option>
|
||||
<option value="it">%i18n:common.post_categories.it%</option>
|
||||
<option value="gadgets">%i18n:common.post_categories.gadgets%</option>
|
||||
<option value="photography">%i18n:common.post_categories.photography%</option>
|
||||
</select>
|
||||
<button onclick={ categorize }>%i18n:common.tags.mk-post-menu.categorize%</button>
|
||||
</div>
|
||||
</div>
|
||||
<style>
|
||||
$border-color = rgba(27, 31, 35, 0.15)
|
||||
|
@ -111,6 +123,17 @@
|
|||
});
|
||||
};
|
||||
|
||||
this.categorize = () => {
|
||||
const category = this.refs.categorySelect.options[this.refs.categorySelect.selectedIndex].value;
|
||||
this.api('posts/categorize', {
|
||||
post_id: this.post.id,
|
||||
category: category
|
||||
}).then(() => {
|
||||
if (this.opts.cb) this.opts.cb('categorized', '%i18n:common.tags.mk-post-menu.categorized%');
|
||||
this.unmount();
|
||||
});
|
||||
};
|
||||
|
||||
this.close = () => {
|
||||
this.refs.backdrop.style.pointerEvents = 'none';
|
||||
anime({
|
||||
|
|
Loading…
Reference in a new issue